Crystal Precipitation and Dissolution in a Porous Medium: Effective Equations and Numerical Experiments
نویسنده
چکیده
We investigate a two-dimensional micro-scale model for crystal dissolution and precipitation in a porous medium. The model contains a free boundary and allows for changes in the pore volume. Using a level-set formulation of the free boundary, we apply a formal homogenization procedure to obtain upscaled equations. For general micro-scale geometries, the homogenized model that we obtain falls in the class of distributed microstructure models. For circular initial inclusions the distributed microstructure model reduces to system of partial differential equations coupled with an ordinary differential equation. In order to investigate how well the upscaled equations describe the behavior of the micro-scale model, we perform numerical computations for a test problem. The numerical simulations show that for the test problem the solution of the homogenized equations agrees very well with the averaged solution of the micro-scale model.
منابع مشابه
Crystal Precipitation and Dissolution in a Thin Strip∗
A two-dimensional micro-scale model for crystal dissolution and precipitation in a porous medium is presented. The local geometry of the pore is represented as a thin strip. The model allows for changes in the pore volume. A formal limiting argument leads to a system of 1D effective upscaled equations. The effective equations allow for travelling wave solutions. Existence and uniqueness of thes...
متن کاملInvestigation of Reversibility of Asphaltene Precipitation and Deposition for an Iranian Crude Oil
In this work, the precipitation and re-dissolution of asphaltenes were studied for an Iranian relatively heavy crude oil. A series of experiments were designed and carried out to quantitatively examine the reversibility of asphaltenes precipitation upon the change in the solvent concentration along with the temperature. n-Heptane was used as the precipitant, and a temperature range of 30 to...
متن کاملA Stefan Problem Modelling Dissolution and Precipitation in Porous Media
A simple one-dimensional model for crystal dissolution and precipitation is presented. The model equations resemble a one-phase Stefan problem and involve nonlinear and multi-valued exchange rates at the free boundary. The original equations are formulated on a variable domain. By transforming the model to a fixed domain and applying a regularization, we prove the existence and uniqueness of a ...
متن کاملAn analysis of crystal dissolution fronts in flows through porous media part 2: incompatible boundary conditions
A model for transport of solutes in a porous medium participating in a dissolution– precipitation reaction, in general not in equilibrium, is studied. Ignoring diffusion– dispersion the initial value problem for piecewise constant initial states is studied, which e.g. for ionic species include a change of the ionic composition of the solution. The mathematical solution, nearly explicitly found ...
متن کاملNumerical Analysis for an Upscaled Model for Dissolution and Precipitation in Porous Media
In this paper, we discuss some numerical schemes for an upscaled (core scale) model describing the transport, precipitation and dissolution of solutes in a porous medium. We consider two weak formulations, conformal and mixed. We discuss the time discretization in both formulations and prove the convergence of the resulting schemes. A numerical study is presented for the mixed formulation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Multiscale Modeling & Simulation
دوره 7 شماره
صفحات -
تاریخ انتشار 2008